150 research outputs found

    A review of domain adaptation without target labels

    Full text link
    Domain adaptation has become a prominent problem setting in machine learning and related fields. This review asks the question: how can a classifier learn from a source domain and generalize to a target domain? We present a categorization of approaches, divided into, what we refer to as, sample-based, feature-based and inference-based methods. Sample-based methods focus on weighting individual observations during training based on their importance to the target domain. Feature-based methods revolve around on mapping, projecting and representing features such that a source classifier performs well on the target domain and inference-based methods incorporate adaptation into the parameter estimation procedure, for instance through constraints on the optimization procedure. Additionally, we review a number of conditions that allow for formulating bounds on the cross-domain generalization error. Our categorization highlights recurring ideas and raises questions important to further research.Comment: 20 pages, 5 figure

    Target Contrastive Pessimistic Discriminant Analysis

    Full text link
    Domain-adaptive classifiers learn from a source domain and aim to generalize to a target domain. If the classifier's assumptions on the relationship between domains (e.g. covariate shift) are valid, then it will usually outperform a non-adaptive source classifier. Unfortunately, it can perform substantially worse when its assumptions are invalid. Validating these assumptions requires labeled target samples, which are usually not available. We argue that, in order to make domain-adaptive classifiers more practical, it is necessary to focus on robust methods; robust in the sense that the model still achieves a particular level of performance without making strong assumptions on the relationship between domains. With this objective in mind, we formulate a conservative parameter estimator that only deviates from the source classifier when a lower or equal risk is guaranteed for all possible labellings of the given target samples. We derive the corresponding estimator for a discriminant analysis model, and show that its risk is actually strictly smaller than that of the source classifier. Experiments indicate that our classifier outperforms state-of-the-art classifiers for geographically biased samples.Comment: 9 pages, no figures, 2 tables. arXiv admin note: substantial text overlap with arXiv:1706.0808

    Effects of sampling skewness of the importance-weighted risk estimator on model selection

    Full text link
    Importance-weighting is a popular and well-researched technique for dealing with sample selection bias and covariate shift. It has desirable characteristics such as unbiasedness, consistency and low computational complexity. However, weighting can have a detrimental effect on an estimator as well. In this work, we empirically show that the sampling distribution of an importance-weighted estimator can be skewed. For sample selection bias settings, and for small sample sizes, the importance-weighted risk estimator produces overestimates for datasets in the body of the sampling distribution, i.e. the majority of cases, and large underestimates for data sets in the tail of the sampling distribution. These over- and underestimates of the risk lead to suboptimal regularization parameters when used for importance-weighted validation.Comment: Conference paper, 6 pages, 5 figure

    Implicitly Constrained Semi-Supervised Linear Discriminant Analysis

    Full text link
    Semi-supervised learning is an important and active topic of research in pattern recognition. For classification using linear discriminant analysis specifically, several semi-supervised variants have been proposed. Using any one of these methods is not guaranteed to outperform the supervised classifier which does not take the additional unlabeled data into account. In this work we compare traditional Expectation Maximization type approaches for semi-supervised linear discriminant analysis with approaches based on intrinsic constraints and propose a new principled approach for semi-supervised linear discriminant analysis, using so-called implicit constraints. We explore the relationships between these methods and consider the question if and in what sense we can expect improvement in performance over the supervised procedure. The constraint based approaches are more robust to misspecification of the model, and may outperform alternatives that make more assumptions on the data, in terms of the log-likelihood of unseen objects.Comment: 6 pages, 3 figures and 3 tables. International Conference on Pattern Recognition (ICPR) 2014, Stockholm, Swede

    On Regularization Parameter Estimation under Covariate Shift

    Full text link
    This paper identifies a problem with the usual procedure for L2-regularization parameter estimation in a domain adaptation setting. In such a setting, there are differences between the distributions generating the training data (source domain) and the test data (target domain). The usual cross-validation procedure requires validation data, which can not be obtained from the unlabeled target data. The problem is that if one decides to use source validation data, the regularization parameter is underestimated. One possible solution is to scale the source validation data through importance weighting, but we show that this correction is not sufficient. We conclude the paper with an empirical analysis of the effect of several importance weight estimators on the estimation of the regularization parameter.Comment: 6 pages, 2 figures, 2 tables. Accepted to ICPR 201

    Projected Estimators for Robust Semi-supervised Classification

    Get PDF
    For semi-supervised techniques to be applied safely in practice we at least want methods to outperform their supervised counterparts. We study this question for classification using the well-known quadratic surrogate loss function. Using a projection of the supervised estimate onto a set of constraints imposed by the unlabeled data, we find we can safely improve over the supervised solution in terms of this quadratic loss. Unlike other approaches to semi-supervised learning, the procedure does not rely on assumptions that are not intrinsic to the classifier at hand. It is theoretically demonstrated that, measured on the labeled and unlabeled training data, this semi-supervised procedure never gives a lower quadratic loss than the supervised alternative. To our knowledge this is the first approach that offers such strong, albeit conservative, guarantees for improvement over the supervised solution. The characteristics of our approach are explicated using benchmark datasets to further understand the similarities and differences between the quadratic loss criterion used in the theoretical results and the classification accuracy often considered in practice.Comment: 13 pages, 2 figures, 1 tabl
    corecore